
Fingerprint Abstraction Layer
for Linux

Daniel Drake
dsd@cs.manchester.ac.uk

Supervisor: Toby Howard

May 6, 2008

School of Computer Science

The University of Manchester

dsd@cs.manchester.ac.uk
http://www.cs.manchester.ac.uk
http://www.manchester.ac.uk
http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

This report is distributed under the terms of the Creative Commons Attribution-
Non-Commercial-No Derivative Works 2.0 UK license.

You are free:

• to copy, distribute, display, and perform the work

Under the following conditions:

• Attribution. You must give the original author credit.

• Non-Commercial. You may not use this work for commercial purposes.

• No Derivative Works. You may not alter, transform, or build upon this
work.

• For any reuse or distribution, you must make clear to others the licence terms
of this work.

• Any of these conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights, including rights for quoting this work and
building upon the research presented within, are in no way affected by the above.

For full information including the legal code of this license, see http://creativecommons.
org/licenses/by-nc-nd/2.0/uk/

The fprintd, fprint demo and pam fprint software components of this project
are made available under the terms of the GNU General Public License, version
2. The full text of this license can be found at http://www.gnu.org/licenses/

old-licenses/gpl-2.0.html

The libfprint and libusb software components of this project are made available
under the terms of the GNU Lesser General Public License, version 2.1. The full
text of this license can be found at http://www.gnu.org/licenses/old-licenses/
lgpl-2.1.html

This software is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

The project logo shown on the front cover was created by Torkild Retvedt and is
available under a Creative Commons Attribution-Share Alike license.

i

http://creativecommons.org/licenses/by-nc-nd/2.0/uk/
http://creativecommons.org/licenses/by-nc-nd/2.0/uk/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Abstract

Fingerprint Abstraction Layer for Linux
Daniel Drake
Supervisor: Toby Howard
May 6, 2008

Fingerprint scanners are popular consumer computing products, but they
are generally unusable under Linux-based operating environments. My
project implements Linux support for a range of USB fingerprint scanners,
allowing for fingerprint-based authentication capabilities. The source
code for the software is released under open source licensing terms with
the intention of building a community of users and developers.

The software is implemented as an abstraction layer with the aim of
integrating into existing Linux desktop software environments. A focus
on clean system design lead into areas of asynchronous system architecture
and a side project implementing asynchronous USB I/O.

The project has successfully achieved wide hardware support and offers
fingerprint-based authentication. The abstraction layer is suitable for
integration into a range of applications. Basic levels of application
integration were achieved, but further work is needed in order to provide
a richer user experience.

ii

Acknowledgements

This project was born from earlier open source projects and I’d like to
thank everyone who has contributed to those efforts. I would like to
specifically thank the following long list of people and companies who have
made direct contributions to my work: Apricorn, Cyrille Bagard, Anthony
Bretaudeau, Jan-Michael Brummer, Gustavo Chain, Covadis, Joaquin
Custodio, Johannes Erdfelt, Markus Haindl, Timo Hoenig, James Klaas,
Vasily Khoruzhick, Seemant Kulleen, Stanislav Lechev, Pavel Machek,
Gerrie Mansur from Security Database BV, Bastien Nocera, Torkild
Retvedt, Rossano Savino, Wolfram Schlich, Matthias Schmidt, Gavin
Smalley, System76, TimeTrex, James Vasile of the Software Freedom
Law Center, Tony Vroon, Craig Watson and others from the NIST Image
Group.

I would especially like to thank Toby Howard, who kindly agreed to be
the project supervisor and has provided unsurpassable support for my
work.

iii

http://www.apricorn.com
http://www.covadis.ch
http://www.securitydatabase.net/
http://www.system76.com
http://www.timetrex.com/
http://www.softwarefreedom.org
http://www.softwarefreedom.org
http://fingerprint.nist.gov/
http://fingerprint.nist.gov/

Contents

1 Introduction 1
1.1 Fingerprint scanning applications . 1
1.2 Software support . 1
1.3 Fingerprint scanning on Linux . 2
1.4 Project objectives . 2
1.5 Open source software . 3
1.6 Report overview . 3

2 Research 4
2.1 Device support . 4
2.2 Image processing . 5
2.3 Summary . 8

3 Design 9
3.1 Public API design . 9
3.2 Data storage . 10
3.3 Data compatibility . 10
3.4 Driver abstraction . 11
3.5 Device discovery . 11

4 First prototype implementation 13
4.1 Objectives . 13
4.2 Implementation choices . 13
4.3 Abstraction implementation . 14
4.4 Driver implementations . 17
4.5 Additional components . 20
4.6 Further developments . 21
4.7 Deficiencies . 21

5 Second prototype implementation 24
5.1 Objectives . 24
5.2 Adding an asynchronous interface . 24
5.3 Implementing a systemwide daemon 31

6 Results 33
6.1 libfprint performance . 33
6.2 fprint demo results . 35

iv

CONTENTS

6.3 pam fprint results . 35
6.4 fprintd results . 35

7 Evaluation 39
7.1 Analysis of results . 39
7.2 Open source project . 40

8 Conclusion 43
8.1 Achievements . 43
8.2 Future plans . 44

References 48

v

Chapter 1

Introduction

1.1 Fingerprint scanning applications

The processing of human fingerprints is not a new area of research. Fingerprinting
has long been used in specialist applications such as crime control.

The recent advancement of technology has lead to new applications for fingerprint
scanning. Fingerprint scanning was once seen as a possibility for convenient and
ultra-secure computerised authentication, but nowadays enough security concerns
have been identified to scare people away from the high security promise.

Despite the shortcomings, companies found uses for fingerprint-based authen-
tication based on the convenience aspect; it is trivially easy to scan your finger.
Developers have realised its potential in situations where security is of noncritical
importance, or where fingerprint scanning can augment an existing authentication
system as an additional level of security.

Fingerprint scanning in the home may seem like a novel idea, but the development
I find most interesting is that hardware manufacturers have found ways to produce
the technology at such low prices that we see fingerprint scanners available on the
market as consumer products. Major companies such as Dell, IBM and Microsoft
integrate fingerprint scanners into laptops and input devices, and the success of such
products has lead to millions of personal computer users having access to fingerprint
scanners.

1.2 Software support

New computer hardware products must obviously be accompanied with software to be
useful. As is common when new types of hardware enter the market, manufacturers
tend to work independently and competing products have almost no degree of
standardisation between them. These manufacturers tend to only offer support for
the largest player in the operating systems market: Microsoft Windows.

My project targets the Linux operating environment. Although Linux’s market
share in the desktop space is only small, the industry is so huge that even the small
players have many millions of users. Given the success of these hardware products
and the rapid growth of the Linux desktop, there are a large number of Linux users

1

1.3 Fingerprint scanning on Linux

who would like to be able to use their fingerprint scanners.

1.3 Fingerprint scanning on Linux

Having a personal interest in taking unsupported devices and making them usable
in Linux-based operating environments, my involvement in fingerprint scanning was
sparked in 2005 when Tony Vroon donated me an unsupported fingerprint scanner so
that I could try to get it going on Linux. My spare time efforts progressed slowly but
surely, and reached the point where I realised I was in range of my goal of making
that device usable and useful on Linux.

During these developments, I became aware of the other widespread fingerprint
scanning devices and other developers working towards making such devices usable.
With the exception of one particular type of device, the short story is that there
were no common fingerprint scanning devices usable in common Linux environments.

1.4 Project objectives

In addition to learning about the sorry state of fingerprint scanner hardware support
on Linux, I realised that us software developers were making the same mistake as the
hardware manufacturers: we were not working together. We shared common goals
and even shared some common problems, but nobody was looking at the big picture
of getting all fingerprint readers working on Linux through a standardised interface.

This leads to the primary objective of my project: to get fingerprint scanning
hardware (in general) usable and useful on Linux, in a well-designed and well-
integrated fashion.

The objective can be broken down into two parts:

1. Integrate fingerprint scanning into common Linux desktop applications.

2. Support a wide range of fingerprint scanning hardware.

In order to achieve application integration, I aim to make it easy for application
developers to integrate fingerprint scanning into their work. Such developers should be
shielded from the ugly implementation details of supporting the particular hardware
that the user has plugged in today. Instead, they should just be presented with a
generic high-level API for fingerprint scanning.

The goal of supporting a wide range of hardware calls for a driver-like model
where the different devices are supported by individual drivers. Each driver is then
brought in-line by presenting an identical interface to the upper layers.

The driver model combined with the aim of providing a generic high-level API
leads to my design plan of developing an abstraction layer: each device that I choose
to support will be backed by a driver, the driver interfaces are unified to a generic
fingerprint scanning interface, and that interface is exposed to applications through
a high-level public API.

2

1.5 Open source software

1.5 Open source software

I proposed to release my project under open source software licenses and to build
a community around the software. This makes sense considering that the project
involves adapting pre-existing open source code, and also given that the target
platform is entirely open source. In this report, I shall explicitly identify any code in
my project that is based upon the work of others.

Successful open source projects tend to benefit from the “release early, release
often” mantra, which I considered adopting for my project. For purposes of academic
assessment, however, I decided to design and implement the core architecture myself
before releasing anything, thus demonstrating my technical ability on my own project.
I also intend to continue development beyond the academic project.

1.6 Report overview

• In Chapter 2, I discuss the targeted hardware devices and the state of previous
open source fingerprint scanning software efforts.

• In Chapter 3, I detail the design of my abstraction layer and the accompanying
components.

• In Chapter 4, I document the implementation of the first prototype of the
software components.

• In Chapter 5, I discuss the implementation of the second prototype and an
extended architecture.

• In Chapter 6, I present results obtained from testing my software components.

• In Chapter 7, I evaluate the results and the success of the project.

• Finally, Chapter 8 discusses the project achievements and future directions for
the software.

3

Chapter 2

Research

2.1 Device support

Through prior involvement with fingerprint scanning efforts on Linux, I picked 4
different devices to support within my software. In this section, I shall identify the
key characteristics of each device and document the state of the pre-existing open
source efforts to get these devices operational.

2.1.1 AuthenTec AES2501

The AES2501[2] is a swipe-type fingerprint sensor. It is an imaging device which
presents a series of 192x16 image slices to the host system. The host must then
combine the slices, eliminating overlap and determining scan direction. The host
software is also responsible for deciding when a finger has been pressed onto or
removed from the sensor.

The AES2501 can be found embedded into many laptops manufactured by Fujitsu-
Siemens and Hewlett Packard. It can also be found in some standalone devices and
tablets. Even when embedded into laptops, this is a USB device accessible over the
USB bus.

Previous open source efforts originated from Wittawat Yamwong, who determined
certain aspects of the device protocol and released a project[35] capable of retrieving
images from the device. Cyrille Bagard built upon Yamwong’s efforts and released a
Linux kernel driver[17] which was later rewritten[19] with the assistance of Vasily
Khoruzhick. In this form, the driver is able to capture and assemble images but
cannot be used for any form of fingerprint authentication. I build upon the work of
Bagard, Khoruzhick and Yamwong in my project.

2.1.2 AuthenTec AES4000

The AES4000 is a press-type USB fingerprint sensor. It is an imaging device which
presents a square fingerprint image to the host system. It has basic finger presence
detection capabilities in hardware.

The AES4000 is available in the Targus PA460U DEFCON Authenticator[13], a
USB peripheral device designed for fingerprint authentication.

4

2.2 Image processing

I am unaware of prior open source efforts to get this device operational on Linux.
In order to operate this device from my project, I make use of the AES4000 technical
specifications that were once available from AuthenTec’s website.

2.1.3 Digital Persona U.are.U 4000B

The U.are.U 4000B is a press-type USB fingerprint sensor which uses optics to
capture a high-resolution impression of the fingerprint. It offers hardware-based
finger presence detection and 2 image capture modes.

The U.are.U 4000B is available as a standalone product from Digital Persona
and is also embedded in several Microsoft input products. Digital Persona also sell
this sensor in module-only form which other companies have integrated into their
own products.

This is the device that got me involved in Linux fingerprinting. I started the
dpfp project[3] in 2005, and it slowly progressed to the point where the software
could retrieve images from the device. The dpfp project did not offer any useful
functionality such as fingerprint-based authentication. I build upon this code in my
project.

2.1.4 UPEK TouchStrip

The UPEK TouchStrip is a swipe-type USB fingerprint scanner. The device includes
a biometric coprocessor [31] which performs image processing in hardware; the USB-
level command protocol is simple as a result. The device does not present images
to the computer, rather it only presents a boolean result: access granted or access
denied.

The TouchStrip is found in many laptops manufactured by Dell, IBM, Lenovo,
and Toshiba. It can also be purchased standalone as the UPEK Eikon reader.

UPEK released software to make this device usable on Linux, but it is entirely
proprietary. The installation process is complex and it does not integrate into the
system well.

Pavel Machek examined the traffic generated by UPEK’s driver and produced
an open-source implementation[25] of the basic functionality. Timo Hoenig later
adapted Machek’s work into a more complete project, ThinkFinger[14]. ThinkFinger
progressed far enough to be able to offer fingerprint-based system login. I build upon
the work of Hoenig and Machek in my project.

2.2 Image processing

3 out of the 4 devices introduced in the previous section all are simple imaging
devices where the hardware presents images to the host computer without making
any interpretation of them. Software on the host system must then examine the
images to decide whether to grant access to the user.

The image processing aspect of a fingerprint-based authentication system is a
complex problem that alone could easily consume a whole 3rd year project. This
problem is one of the biggest reasons why Linux support for fingerprint readers has

5

2.2 Image processing

been poor until now; most fingerprint scanners are just imaging devices, but we were
lacking good software to actually process and interpret the images.

Given that the focus of my project is on designing and integrating an abstraction
layer, I looked to use existing image processing solutions to overcome this problem.

2.2.1 NIST Biometric Image Software

NBIS[10] is a collection of software utilities for fingerprint image processing. It
is developed and published by the image group at the US National Institute of
Standards and Technology[8].

According to the NBIS user guide[16], the software was developed for the Federal
Bureau of Investigation (FBI) and Department of Homeland Security (DHS). Chapter
1 of the user guide suggests that this software is used within the FBI for crime control,
and within the DHS for border control. You are required to scan your fingerprint at
the immigration desk when entering the United States, and I suspect that NBIS is
being used there.

As NBIS was developed[9] by employees of the United States Federal Government
in the course of their official duties, the software is “not subject to copyright protection
and is in the public domain.” It is therefore suitable for inclusion in an open source
project.

I chose to use NBIS to solve the image processing problem. In order to integrate
NBIS with my software, I needed to understand the operation of the individual
components.

MINDTCT

MINDTCT is the first NBIS component I use in my software. According to the
NBIS website[10], MINDTCT is a minutiae detector which automatically locates
and records ridge ending and bifurcations in a fingerprint image.

A ridge is a solid curvy line that appears on your fingerprint. Your fingerprint is
essentially a collection of ridges with different sizes, shapes, and directions. Figure 2.1
shows how ridges tend to end and split (bifurcate) in various places.

A ridge ending A ridge bifurcation

Figure 2.1: Ridge features

In fingerprint terms, a minutia is a point of interest. Ridge endings and bifurca-
tions are regarded as minutiae.

To locate the minutiae, MINDTCT first takes the raw fingerprint image and
applies a series of algorithms to it to process and enhance the image. The result is

6

2.2 Image processing

a binarized image; a 2-colour image consisting only of black ridge pixels against a
white background.

Figure 2.2: MINDTCT binarization results

MINDTCT then performs several simple scans of the image, searching for occur-
rences of several small predefined pixel patterns. Upon successful match against a
particular pattern, MINDTCT records a minutia point in that location.

One disadvantage of the simple approach taken to locate minutiae on the binarized
image is that many false minutiae are detected. To counteract these undesirable
results, MINDTCT then applies a series of algorithms to attempt to identify and
remove the falsely-detected minutiae such as minutiae detected in regions of poor
image quality.

The final result is a collection of minutiae points that can be plotted on the
fingerprint:

Figure 2.3: Detected minutiae plotted on fingerprint

The locations of the minutiae can then be stored for later use. In addition to
the co-ordinate locations for each minutia, MINDTCT additionally records extra
information such as the ridge direction, whether the point marks an ending or a
bifurcation, and the algorithmic confidence of the reliability of that minutia.

BOZORTH3

BOZORTH3 is a fingerprint matching system which takes minutiae sets generated by
MINDTCT and compares them for similarity. The combination of MINDTCT with
BOZORTH3 essentially allows you to determine whether two fingerprint images are
of the same finger or not, an obvious requirement for any kind of fingerprint-based
authentication system.

According to the user guide[15], BOZORTH3 was originally developed by Allan
S. Bozorth at the FBI with the aim of investigating the notion of a translation and

7

2.3 Summary

rotation invariant algorithm for matching two fingerprints to each other. NIST then
improved the matcher and integrated it into their NBIS distribution.

The BOZORTH3 matcher compares two minutiae sets, evaluates their similarity,
and outputs a match score. A suitable threshold is then applied to the match score
to decide whether the minutiae sets represent the same finger or not.

2.2.2 FVS/eFinger

It is worth mentioning the only other open source fingerprint image processing library
I could find. FVS[28] is a collection of software utilities for fingerprint verification.

I spent time investigating FVS in my work that predated this project, and
although the results looked promising at a glance, I found it to be unreliable: too
many ridge structures were being destroyed during enhancement, and too many
false minutiae were being detected. Additionally, the performance of the library was
lacking; the processing and enhancement operations take a number of seconds of
CPU time even on modern computers.

FVS lacks minutiae set comparison functionality, but another project, eFinger[29]
was built from FVS and does include such code. Perhaps because of inaccuracies of
the earlier FVS processing, I was unable to get any consistent results out of eFinger’s
matcher.

2.3 Summary

I have chosen 4 different hardware devices to support in my software. They are all
quite different from each other. Some are press sensors, others are swipe sensors.
Most are imaging devices, but one does image processing in hardware. The degree of
hardware-based finger presence detection varies between all the devices. Hiding these
vast differences within an abstraction layer is one of the most interesting technical
challenges encompassed by my project.

3 out of the 4 devices rely on software for the heavy lifting of processing the data
from the sensor. As my project is not an image processing project, external software
is needed. I have selected NBIS to handle these tasks.

Given my accumulated existing knowledge about fingerprint scanning, I decided
that I was ready to begin the design and implementation of my software after only
this brief amount of research.

8

Chapter 3

Design

3.1 Public API design

My project aims to provide easy mechanisms for integrating fingerprint scanning
into applications. A well-designed generic fingerprint scanning API ensures that
developers can integrate my software without requiring an in-depth understanding
of fingerprint scanning. I have designed the API with a view for simplicity, offering
key functionality described in this section.

3.1.1 Enrollment

Enrollment is the training process of teaching the system what your finger looks like.
During enrollment, the system asks the user to scan a specific finger one or more
times, and the system trusts that the finger scanned was the one asked for.

After processing, the result is some enrollment data for each enrolled finger. This
data encodes specific information about the fingerprint (e.g. co-ordinate locations of
the minutiae) and is stored to disk for later use.

3.1.2 Verification

Verification is what most people think of when they think of fingerprint scanning. The
user scans a previously-enrolled finger, and the system then performs a one-to-one
comparison of the enrollment data against the freshly scanned fingerprint. Access is
granted if the system decides the freshly-scanned finger matches the enrollment data,
and is denied otherwise.

Verification is suitable for implementing a fingerprint-based logon system where
the user enters their username, and then the system prompts for a previously enrolled
finger (rather than a password).

3.1.3 Identification

Identification is similar to verification, but is where the freshly scanned fingerprint
is compared to an entire database of enrollment data for a number of fingerprints.
Identification determines which enrollment data entry matches the freshly scanned

9

3.2 Data storage

fingerprint. Identification can also reveal that the freshly scanned fingerprint is
absent from the database.

Compared to verification, identification allows for more flexible authentication
scenarios. For a single-user logon, identification allows you to implement a logon
system where the user scans any of their enrolled fingers. Identification can also be
used where the system has no knowledge of which operator is using the system; in
authentication terms, you could think of it being able to replace both the username
and the password.

3.2 Data storage

As identified in the previous section, storage and retrieval of enrollment data is
required functionality for a fingerprint authentication system to implement enrollment,
verification and identification. My design allows for two data storage/retrieval
mechanisms.

The first interface aims at simplicity. To save a print, the application calls a
function with a single parameter identifying which finger the print corresponds to
(e.g. left ring finger). Loading previously saved data is an equally simple procedure.
Internally, the storage mechanism is fixed: enrollment data is stored in a hidden
data directory under the current user’s home directory.

I also recognised that some applications will demand more flexible storage capa-
bilities. They may wish to store enrollment data in a database, apply encryption,
and so forth. My design provides additional functionality to access a binary blob
representing an in-memory enrolled print, and to construct an enrolled print from
a binary blob. This interface allows the developer to take the raw print data and
store it using whatever mechanism suits them; the data can then be fed back into
the software at a later time, and used for verification or identification.

3.3 Data compatibility

An issue arises from the design of supporting a range of devices within the software.
Under the storage interfaces described in the previous section, it would be possible
for an application to store enrollment data for a finger scanned using one type
of fingerprint scanner, and then to attempt to use that enrollment data during
verification against a scan from a completely different type of fingerprint scanner.

Without wanting to spend too much time examining compatibility of data from
the various hardware devices, I decided to take the simplistic approach and make
enrollment data from one type of device completely incompatible with all other
device types (i.e. rejected by the software if attempted to be used in this way).
After all, the imaging devices have varying sensor sizes and use different technologies
for data acquisition; there are significant differences between the appearance of the
prints that come back. We must also consider the enrollment data that comes back
from the UPEK TouchStrip non-imaging device, the format of which is unknown.

I decided that the binary enrollment data format should include a header iden-
tifying which device type it came from. If that data is later loaded for use with a

10

3.4 Driver abstraction

different device, the software is able to reject the request for incompatibility reasons.
Similar metadata can also be represented in the file paths used by the simplistic
home directory storage interface.

It should be noted that this design does not involve any loss of functionality for
the end user. It is still possible to use all 4 device types for verification of a particular
finger, provided the finger has been separately enrolled on all 4 devices.

3.4 Driver abstraction

My software design separates code specific to each supported device type into driver
modules. It makes sense to have the drivers be as small and simplistic as possible,
with all common code only present in the upper layers. In other words, drivers in
an ideally designed system should offer access to the primitive operations of the
corresponding devices, but not be required to do too much processing of input or
results.

The primitive operations of the 3 imaging devices are:

1. Detect finger on sensor

2. Capture image

3. Detect finger removed from sensor

Considering the one remaining device (the UPEK TouchStrip), the primitive
operations are:

1. Enroll finger

2. Verify finger

3. Identify finger

The TouchStrip device operations are identical to the 3 core operations described
in Section 3.1. The TouchStrip driver will therefore be able to directly feed results
into the device abstraction layer.

On the other hand, the imaging device operations are distanced from the core
operations and require an image processing layer with intermediate logic to bridge
the gap. This leads to a multi-layered design where the standard interface is of a
driver offering high-level functionality for enrolling and verifying, and if a device
driver is unsuitable for that model then additional layers are added to bring it into
unison with the others. The TouchStrip driver will plug in as a ‘primitive’ driver,
but the imaging drivers will instead plug into an imaging layer that will convert
them to fit the primitive driver interface. This architecture is shown in Figure 3.1.

3.5 Device discovery

The 4 targeted devices are all USB devices and I do not know of any fingerprint
scanners that are connected through other means. This is quite convenient as it
means no further abstraction is needed for accessing devices over different buses.

11

3.5 Device discovery

TouchStrip
driver

Imaging layer

Device abstraction layer

AES2501
img driver

AES4000
img driver

U.are.U 4000B
img driver

Functions exported at this interface:
●Detect finger presence
●Detect finger removal
●Capture image

Functions exported at this interface:
●Enroll
●Verify
●Identify

Primitive drivers

Imaging drivers

Figure 3.1: Driver abstraction model

All USB devices identify themselves and their capabilities by presenting a device
descriptor to the host system. The device descriptor includes a vendor ID and a
product ID which are fairly self-explanatory: each vendor has its own vendor ID, and
each vendor assigns a product ID (unique to that vendor) for each different product.

Under my design, each driver exports a list of supported device [vendor ID,

product ID] pairs. The upper layers can then scan the host’s USB buses for devices,
handing off supported devices to the appropriate drivers.

12

Chapter 4

First prototype implementation

4.1 Objectives

After completing my research and thinking through the design issues, I was left with
a concern. My design involves combining various incomplete and incompatible device
drivers, some image processing code, and my self-designed abstraction layers; will
these components produce satisfactory results when combined into a library?

I was eager to find out, so I decided to take the prototyping approach and
produce an initial implementation with the aim of demonstrating feasibility of my
ideas, leaving other issues to be ironed out later.

4.2 Implementation choices

4.2.1 Language

I chose to implement my abstraction layer in C for the following reasons:

• Although it may not be classed as a low-level language, the fundamentals of
C are quite primitive, and as such, it is a good choice of language for writing
device drivers.

• Application integration is one of my goals. Developing the abstraction layer in
C helps here as C is implicitly compatible with most higher level languages;
bindings can be created on top of a C library for C++, Java, Python, etc. If
I instead implemented the abstraction layer as Java classes, for example, it
would be tricky to access my abstraction layer from a Python application.

• Although it falls outside of the primary goals, fingerprint scanning on embedded
systems is a likely focus for the future. Software systems written in C are
ideal for embedded environments because C code is compiled to native binaries
which do not have special run time requirements.

• It is my personal language of choice for building low-level components and
systems with considerable architecture. I am comfortable with the language
and the surrounding tools; I have written and debugged a lot of C code.

13

4.3 Abstraction implementation

I chose to implement my abstraction layer as a library, compiled into a Dynamic
Shared Object (DSO). Applications wishing to use my abstraction layer will link
against the library at compile time, and the run-time linker will complete the dynamic
linking once the program is executed.

To fit naming conventions, I named my library ‘libfprint.’ Any references to
libfprint in the remainder of this report refer to the abstraction layer implemented
as a shared library.

4.2.2 Dependencies

libfprint depends upon two additional libraries at both compile time and run time:

1. libusb, a shared library which allows you to perform USB device I/O from
userspace. This avoids having to write kernel-mode drivers for the fingerprint
readers, and additionally paves the road for cross-platform compatibility; libusb
is portable to FreeBSD, Mac OS X, Windows, and more.

2. glib, a shared library providing miscellaneous utility functions. You might
view glib as a C equivalent of C++’s standard template library (STL). glib
was chosen for the convenience of having quick access to linked lists, specialised
memory allocators, string handling functions, and so on.

4.3 Abstraction implementation

4.3.1 Device handling

libfprint is implemented as a device-centric model. Applications locate a device they
wish to operate, open it, and then use it to start operations such as enrollment.

libfprint offers a fp discover devices() function call which scans the system for
supported fingerprint scanners and returns them in a list of fp dscv dev structures.
libfprint is able to produce a list of supported devices by checking USB device ID’s
as described in Section 3.5.

To start using a specific device, the application must open it by passing the
selected fp dscv dev structure to the fp dev open() function. This function returns
a device handle in the form of a fp dev structure. Devices are closed after use with
the fp dev close() function.

4.3.2 Core operations

Armed with a fp dev structure, applications can then call functions to perform the
core operations introduced in Section 3.1:

1. Enrollment. The fp enroll finger() function takes a device, performs
enrollment, and upon success, returns some enrollment data in the form of a
fp print data structure.

14

4.3 Abstraction implementation

2. Verification. The fp verify finger() function takes a device and some en-
rollment data, performs a fingerprint scan, and returns a status code indicating
whether the scanned finger matches the enrollment data.

3. Identification. The fp identify finger() function takes a device and a
gallery (an array) of enrolled prints, performs a fingerprint scan, and returns
the offset into the gallery where a matching print was found.

Variants of all 3 functions exist which additionally return images of the scanned
finger, if available. Imaging is not exposed at the primitive driver level, but I decided
to bubble up images through that layer anyway. Many applications will be interested
in displaying any available images, and they should not have to care whether the
device in question fits into the primitive layer or the imaging layer. The less desirable
alternative would be to have another 3 functions which only work for imaging devices,
forcing such applications to implement logic such as:

if (is_imaging_device(dev))

fp_enroll_finger_img(&data, &img);

else

fp_enroll_finger(&data);

4.3.3 Data storage

Section 3.2 detailed my design ideas for storing of enrollment data. I implemented a
function, fp print data get data(), which takes some enrollment data returned
from the enrollment function and returns a binary representation of that data.
Applications are not intended to make any interpretations of this data blob. The
format is as follows:

• A FP1 header indicating version 1 of fprint enrollment data

• A driver ID describing which driver produced the enrollment data

• A device type describing which type of device produced the enrollment data

• The enrollment data itself (e.g. NBIS minutiae for imaging devices)

I then implemented a fp print data from data() function which takes binary
data previously returned by fp print data get data() and returns a corresponding
fp print data structure. To implement the data compatibility ideas discussed in
Section 3.3, the verification and identification functions check that the driver ID and
device type identifiers match the device that is performing the scan.

The more simplistic data storage interface is implemented around these func-
tions. The fp print data save() function saves some enrollment data to the user’s
home directory, and the fp print data load() function retrieves some previously
saved data. Both of these functions take an additional parameter indicating which
finger the print corresponds to (e.g. right little finger). The data is stored in the
binary format described above at location .fprint/prints/<driver ID>/<device

type>/<finger number> within the user’s home directory.

15

4.3 Abstraction implementation

Enrollment data saved with the simple interface can be located with the
fp discover prints() function, and then opened with
fp print data from dscv print().

4.3.4 Primitive driver model

Section 3.4 introduced the idea of a top-level driver abstraction layer, where each
driver presents the core fingerprint scanning operations. Drivers that implement the
primitive model provide a fp driver structure including the following information:

• A statically assigned unique driver ID

• The name of the driver

• A list of supported USB device IDs

• A function to initialise a device

• A function to deinitialise a device

• A function to run an enrollment session

• A function to run a verification session

• A function to run an identification session

Internally, libfprint keeps track of which driver is backing each device. Implemen-
tation of the public API is therefore quite simple; for example, the implementation
of fp verify finger() just looks up the driver for the specified device and invokes
the verification function supplied in the corresponding fp driver structure.

4.3.5 Imaging driver model

Section 3.4 also discussed the need for a separate driver abstraction layer for imag-
ing devices. Drivers that implement the imaging model provide a fp img driver

structure including the following information:

• All of the information from the fp driver structure except the enroll/verify/identify
functions

• The width and height of images presented by this driver

• A function to await a finger-on-sensor event

• A function to await a finger-removed-from-sensor event (optional)

• A function to capture an image

16

4.4 Driver implementations

Observe that the imaging driver model is distanced from the concept of finger-
printing (with the exception of finger presence detection): there is no notion of
verification or identification or how else the images might be used. Being common
to all drivers, all image processing code is present in the upper layers and is not
duplicated.

The imaging layer converts each fp img driver to a fp driver structure and
presents it to libfprint. The imaging layer provides generic implementations for
the enroll/verify/identify operations which are expressed by a series of calls to
driver-supplied fp img driver functions. For example, enrollment is implemented
as follows:

1. Call the driver’s await-finger-presence function

2. Call the driver’s image capture function and retrieve an image

3. Call the driver’s await-finger-removal function

4. Process the image with MINDTCT

5. Return a minutia set as enrollment data

4.4 Driver implementations

Except for where significant problems were identified and solved, discussion of driver
performance will be left until Chapter 6.

4.4.1 UPEK TouchStrip

Section 2.1.4 identified ThinkFinger[14] as a suitable basis for a UPEK TouchStrip
driver. When I came to implement a libfprint driver based on this code, I realised
that the bus protocol was only loosely understood. The ThinkFinger code is difficult
to follow because of the way it jumps around a lot.

I spent some time analysing the bus traffic in more detail, and identified various
patterns in the messages. This allowed me to implement a more readable driver with
a straightforward flow. Attention to detail revealed some questionable behaviour
inside ThinkFinger; for example, each incoming message ends with a checksum, and
in one case, ThinkFinger looks at the checksum value to determine the message
meaning. Although this doesn’t cause problems, it is clear that ThinkFinger should
instead be looking at a status byte that appears within the message content.

The bus protocol for enrollment involves the driver sending a specific command
sequence to begin enrollment, then repeatedly polling for result codes. Result codes
indicate good quality scans, bad quality scans that need retrying, enrollment comple-
tion, etc. When enrollment completes, the driver receives a blob of approximately
200 bytes of enrollment data from the device. The driver presents this to the upper
layers in the form of a fp print data structure.

The bus protocol for verification involves uploading the enrollment data recorded
earlier, and then polling for status codes while the user scans their finger to determine
the verification result.

17

4.4 Driver implementations

Identification, although believed to be possible[20], is unimplemented as that part
of the protocol remains unknown.

4.4.2 Digital Persona U.are.U 4000B

Being the author of the project where the device protocol was determined, I imple-
mented the U.are.U 4000B imaging driver with ease.

The U.are.U 4000B is a mode-driven device. There are modes for waiting for
finger presence, waiting for finger removal, and image capture. The implementations
of the fp img driver finger presence detection and image capture functions simply
set the appropriate mode on the device and wait for any appropriate interrupts or
data stages.

The images returned from the device are standard 8-bit greyscale images and do
not require special assembly or processing.

4.4.3 AuthenTec AES4000

The AES4000 driver was implemented based on device specifications. Initially, I had
problems with poor image quality (too many ridges being melted together) but I
managed to tweak the sensitivity registers to improve this. Ideally, the driver would
evaluate the the image data and calibrate accordingly, but I fixed some reasonable
values in order to save time.

Implementing finger-on-sensor detection was easy because this is directly sup-
ported by the hardware. Image capture required careful interpretation of the data
format; the image pixels are packed into 3-bit nibbles, two per byte, and arranged
in a confusing order. The device specifications provide enough information to be
able to decode the data into standard greyscale images which can be presented to
libfprint’s imaging layer.

Problems were encountered during the processing of images from the AES4000.
The device sensor is only small and MINDTCT was chewing up the small images, as
shown in Figure 4.1.

Figure 4.1: AES4000 fingerprint image and binarized version

Page 48 of the NBIS user guide[16] states that the MINDTCT algorithms and
parameters have been designed to optimally process images scanned at 500 pixels per
inch, whereas this sensor has resolution of less than half that, at 213 PPI. I decided
to try artificially enlarging the image prior to processing. Figure 4.2 shows the vast
improvement in binarization results.

18

4.4 Driver implementations

Figure 4.2: Enlarged AES4000 fingerprint image and binarized version

4.4.4 AuthenTec AES2501

I based my AES2501 driver on previous work researched in Section 2.1.1. After
studying the code from previous projects, implementing my own driver was relatively
painless.

Despite a lack of hardware-based finger detection capabilities, the device does
offer an alternative capture mode which simplifies this task. In this mode, the device
returns a histogram of the image captured at that moment, without transferring
image data. The driver can apply some simple calculations to the histogram data to
calculate its area. A suitable threshold is then applied to implement detection of
finger presence and removal.

Image capture is more complicated than other devices. The device returns a
series of 192x16 strip images, encoded in the same unusual format as the AES4000
images. Figure 4.3 shows the strips from a sample scan decoded and appended to
each other on a grid.

Figure 4.3: AES2501 scanned strips shown on a grid

The driver then eliminates overlap between the strips using a simple algorithm.
The resultant merged image is shown in Figure 4.4.

19

4.5 Additional components

Figure 4.4: AES2501 scanned image after eliminating strip overlap

4.5 Additional components

4.5.1 pam fprint: Pluggable authentication module

Most Linux desktop systems use a modular authentication system called Pluggable
Authentication Modules (PAM). The most common setup consists of one user-visible
module that asks for a password, but PAM can be configured to create more elaborate
setups involving smart cards, network authentication, and more.

One advantage of PAM is that it is a centralised architecture with a documented
API for authentication. Many applications use PAM for authentication, including
the standard Unix login program (shadow) and graphical login managers such as the
GNOME Desktop Manager (gdm).

As my first application integration step, I developed pam fprint, a PAM module
to provide fingerprint authentication through libfprint’s functionality. The imple-
mentation can be described as follows:

1. PAM asks pam fprint to authenticate a user.

2. pam fprint uses libfprint to scan for available fingerprint scanners and a finger-
print enrolled with one of those scanners.

3. After locating suitable enrollment data, pam fprint asks PAM to send a message
to the user, asking that they scan a specific finger.

4. pam fprint calls a function within libfprint to start verification.

5. When verification results arrive, pam fprint reports authentication results to
PAM.

4.5.2 fprint demo: Graphical demonstration application

I developed a GUI application, fprint demo, with the intention of using this to
demonstrate the functionality of my abstraction layer at the assessed demonstration
of results.

fprint demo offers an interface for enrolling fingers and deleting enrollment data
for previously enrolled fingers, an interface for verifying a specific finger, and an
interface for identifying a finger from a selection of previously enrolled fingerprint
data. For imaging devices, it shows the scanned fingerprints on-screen and allows
you to view the binarized version with minutiae plotted.

20

4.6 Further developments

fprint demo proved useful during development as a testing tool, particularly for
evaluating imaging performance and other scenarios where command line test utilities
were inconvenient.

4.6 Further developments

After releasing my software to the open source community, further developments
ensued.

• Khoruzhick contributed support for scan direction detection to the AES2501
driver. This allowed him to use the sensor embedded in his laptop, which
appears to be mounted 180◦ rotated compared to other systems.

• Jan-Michael Brummer contributed a device driver for another UPEK device.
The TouchChip can be found embedded in Samsung laptops.

• Anthony Bretaudeau contributed a device driver for the AuthenTec AES1610,
a smaller sensor found in some laptops and tablets.

• Gustavo Chain contributed a device driver for the SecuGen FDU2000 scanner.

• I committed various bug fixes, feature enhancements required for fprint demo
development, image quality improvements for the AES2501 driver, and some
code cleanups.

4.7 Deficiencies

The software components forming my prototype implementation successfully dispelled
my concerns about feasibility; they were operating nicely. Nevertheless, development
drew my attention to 3 main deficiencies which I shall explain in this section.

4.7.1 Synchronous I/O

The most significant design flaw was the lack of an asynchronous interface. The
fingerprint scanning functions are all entirely synchronous. To illustrate this further,
consider this example:

r = fp_verify_finger(dev, enroll_data);

The above function call causes the fingerprint reader to be powered up. libfprint
then waits until the user has scanned their finger, processes the results, compares
the scanned finger to the enrollment data, and returns a verification result.

The important point here is that execution remains within this function for the
entire length of time that it takes the user to scan their finger. The user might be
away from the computer, meaning that it may potentially take hours for this function
to return a value. This is said to be a blocking interface.

21

4.7 Deficiencies

When calling into these blocking functions, the parent application effectively loses
control of that thread for the duration of the function call. Undesirable behaviour
will occur if this is a single threaded application that also handles other events. For
example, the visual interface in a GUI application would be unresponsive when the
main thread is tied up within a libfprint function call.

This issue could be circumvented within the application. The example GUI could
create a dedicated thread for fingerprint scanning, leaving the main thread available
to respond to GUI events while the fingerprinting thread is tied up within libfprint.
Although this may avoid the problem, I feel that it is unacceptable to impose the
requirement that any application with other event sources must create a dedicated
thread for fingerprinting.

Another deficiency with the blocking interface is the inability to cancel ongoing
operations. The user may wish to cancel the verification operation when the appli-
cation is stuck within fp verify finger(), but there is no standard way to cancel
an ongoing function call. A separate cancellation function would have to be added,
invoked from a separate thread, and the original thread would have to check for
cancellation. Again, this may be a workable approach, but I feel that it would lead
to implementation headaches, and what’s more, I feel that we can do better.

The deficiencies associated with the blocking interface can be easily seen within
fprint demo. When you request a fingerprint scan through performing enroll-
ment/verification/identification, there is no button that allows you to abort the
operation (and no sensible way of implementing it). If you move the window when
the application is waiting for you to scan your finger, certain parts of the screen will
go blank and stop redrawing.

4.7.2 Device access contention

My first prototype implementation bears no consideration for multiple applications
wanting to use the same fingerprint scanner at the same time. If one application has
opened a specific fingerprint reader for potential later use, any other applications
will be unable to open the fingerprint reader and it will be unclear as to why that is
the case. There is no central resource management within my software; this impacts
the user experience when multiple fingerprint-enabled applications are running.

4.7.3 Integration limitations

I developed pam fprint with the aim of integrating with all existing applications that
rely on PAM for authentication. In reality, many such applications operate incorrectly
with interactive PAM modules that ask for something other than a password.

Other limitations were encountered due to the PAM architecture. It would be
beneficial to be able to provide some kind of interactive fingerprint scanning feedback
during authentication, but there is no clear way to pass such data through the PAM
architecture.

Additionally, PAM is incapable of creating more flexible authentication scenarios
where you are simultaneously presented the choice of scanning your finger or entering
your password. The pre-existing UPEK TouchStrip project, ThinkFinger, does

22

4.7 Deficiencies

actually achieve this but the implementation is inelegant: it relies on threads, and
relies upon the kernel being able to emulate key presses when a fingerprint is scanned.
This leads to unwanted side effects[37] in some applications.

23

Chapter 5

Second prototype implementation

5.1 Objectives

After evaluating the problems identified in the first prototype, I began working on a
new version to overcome these deficiencies. This was planned to be an incremental
prototype on top of the earlier code, but it turned out that a fair amount of rewriting
was necessary.

Development of this prototype focused upon overcoming the problems identified
earlier:

• To overcome problems caused by a purely synchronous library interface, I
aimed to add an asynchronous interface.

• To overcome device access contention problems, I decided to implement a
systemwide fingerprint device access service on top of libfprint.

• To overcome integration limitations, I decided to circumvent PAM and integrate
applications directly with the fingerprint device access service.

5.2 Adding an asynchronous interface

Section 4.7.1 discussed problems with the prototype 1 interface. These problems
can be overcome with the addition of an asynchronous interface. Instead of saying
“verify a fingerprint and block this thread until you have results,” applications can
say “please start a verification session now, and when you have some results, please
call the following function in my application to let me know.” The function call to
start the verification session is non-blocking and immediately returns control to the
application. Similar asynchronous interfaces can also be provided for enrollment and
identification.

You might view libfprint as being a layer on top of the USB access layers.
Figure 5.1 shows the system architecture from this perspective.

The design of any asynchronous system mandates that any layer below the asyn-
chronous interface must also be asynchronous. If libfprint is to offer an asynchronous
interface, all components beneath it must therefore also support asynchronous I/O.
There is no problem with usbfs — the low-level kernel interface allowing you to

24

5.2 Adding an asynchronous interface

libfprint

libusb

Linux

usbfs

Figure 5.1: USB access layers

perform USB I/O from userspace — which does support asynchronous USB transfers.
Issues only arise when we reach libusb (a C interface to usbfs), which only supports
synchronous I/O. libusb’s lack of asynchronous I/O functionality is the real reason
why the asynchronous interface was not implemented from the start (the initial
prototype focused on feasibility).

We can view all USB transfers as divided into 2 logical messages. For outgoing
data:

1. Host sends data to device.

2. Device sends acknowledgement back to host when data has been processed.

There may be significant delay between these two stages. The device may take a
while to process the data. A similar story exists for incoming data transfers, which
again happen as two messages:

1. Host requests a certain amount of data from device.

2. Device sends data to host.

Again, long delays may exist between each message. The host may request data
long before the device is actually ready to transfer any.

As a software interface, libusb combines both messages into a single function call,
and hence only presents a blocking interface. For some of the devices, a function call
such as the following would be used to retrieve fingerprint scan data from the device:

usb_bulk_read(device, 0x81, buffer, buffer_size, 0);

libusb then requests buffer size bytes of data from the device and blocks until
some data has been received. When interfacing with the aforementioned fingerprint
scanners, this function will block until the user has scanned their finger; we are then
left with the same problem as described in Section 4.7.1. It is clearly impractical
to implement a true asynchronous libfprint interface when the underlying libusb
function calls are blocking.

25

5.2 Adding an asynchronous interface

5.2.1 USB access libraries

OpenUSB

Even though libusb was the root of my inability to provide an asynchronous interface
within libfprint, I did not see this as a big problem. libusb development appeared to
be stalled, but I was already aware of an alternative USB library under development.
OpenUSB[11], a project sponsored by Sun Microsystems, has similar goals and aims
to provide missing features such as asynchronous I/O. I anticipated a relatively
simple migration of my drivers from libusb to OpenUSB.

Having thought through this problem for some time, I had various expectations for
OpenUSB’s design with regard to asynchronous I/O. I envisioned a lightweight design
where parent applications could monitor the asynchronous event sources. I envisioned
an interface where it would be easy for applications to process asynchronous transfer
results. After actually looking at OpenUSB, I saw none of this and was disappointed.

I began examining the OpenUSB implementation in more detail, aiming to
rework things to better fit my ideas. I encountered various implementation details
that I found offputting; notably the creation of several internal library threads and
complicated synchronisation between them. It became apparent that it would be
difficult for me to apply my own ideas to this design, and this was acknowledged[24]
by an OpenUSB developer. I decided that it would be less effort to create my own
USB library.

This is not meant as a criticism of OpenUSB; it is a promising project with a
number of capable developers behind it. I simply required a different solution in
order to cleanly present the libfprint application integration opportunities that I was
hoping for.

Rewriting libusb

I moved on to developing my own USB library with the following goals:

• To offer both synchronous and asynchronous I/O.

• Lightweight, with no internal library threads (a “zero threads” model).

Like my other software components, I created this as an open source project with
the aim of it being continued beyond the academic project. I borrowed some code
from libusb, but the project turned out to be an almost complete rewrite.

After publishing my new library in a development repository, I got in touch
with Johannes Erdfelt, the original libusb author. Erdfelt expressed[21] his liking
of my design ideas, admitted that he was lacking time to continue the project, and
handed the libusb project over to me! This is rather significant given the widespread
adoption of existing libusb releases.

My new USB library is destined to become the v1.0 release of libusb. I shall refer
to it as libusb-1.0 for the remainder of this report. Further mentions of libusb-0.1
refer to Erdfelt’s earlier library which did not offer asynchronous I/O functionality.

This may sound like a lot of work, however, I had given this design enough
consideration that it took me less than one week to reach a working implementation

26

5.2 Adding an asynchronous interface

suitable for my needs. Other libusb users have different requirements, so I will
need to spend time fleshing out the library before it can become a full libusb-0.1
replacement.

Zero threads model

Although discussion of my libusb-1.0 implementation is out of the scope of this
report, I do need to explain the asynchronous transfer model to aid understanding
of the following sections.

As previously mentioned, all USB transfers can be viewed as logically split into
two messages, and an asynchronous interface shares that split view of each transfer.
The application calls a function to asynchronously submit a transfer request, and
the application receives a callback from libusb when results have become available.

After a transfer has been submitted, libusb must keep track of ongoing operations,
monitor them for completion, and invoke the application-supplied callback functions.
This presents an interesting question under my threadless design: the library can
only be executing code when the parent application is calling a libusb function, so
how and when can it perform these event handling duties?

My design dictates that any parent application that performs asynchronous I/O
must repeatedly call a function, libusb handle events(), so that libusb can handle
any pending events. This raises the next question; how does the application know
when it should call this function?

Most applications of any form of complexity will be built around the concept of
a main event loop. This loop monitors various event sources and invokes appropriate
functions when events are detected. Event sources such as network sockets, timers,
and other kernel interfaces are usually represented as file descriptors (recall one of the
core UNIX design philosophies: everything is a file). An application typically groups
file descriptors for all event sources and passes them to the poll() or select()

system call. Those system calls put the application to sleep and awaken it when
events are ready to be processed. The application then handles the events and
proceeds to the next iteration of the main loop.

My libusb-1.0 design fits this model perfectly. libusb-1.0 exposes a set of file
descriptors which the application can monitor. When events are detected on such
file descriptors, the application is trusted to call libusb handle events() as soon
as possible.

5.2.2 Rethinking libfprint abstraction layers

With the availability of an asynchronous USB layer, I next returned to my goal of
adding an asynchronous interface to libfprint.

In the previous prototype, the drivers implemented blocking functions for op-
erations such as “wait for finger-on-sensor.” There can be no blocking functions
in an asynchronous system, so the abstraction was changed to a model where the
driver provides a non-blocking function to enable the device, and when enabled, the
driver asynchronously informs the library of events (such as finger presence) as they
happen.

27

5.2 Adding an asynchronous interface

5.2.3 Rewriting libfprint drivers

Next, I rewrote all the drivers to fit the new abstraction layer interface, and converted
them to use solely asynchronous USB I/O through libusb-1.0.

A piece of example code is shown below which I shall refer to throughout this
section. The code is simplified and shortened to remove irrelevant details while still
highlighting certain asynchronous design considerations.

int do_init(struct fp_dev *dev) {

send_cmdresponse(dev, init_resp03);

read_msg(dev, ...);

send_cmd28(dev, 0x06, 0x04, 1);

read_msg28(dev, 0x06, ...);

}

The code sample above is a simplified version of the UPEK TouchStrip initialisa-
tion code from the previous prototype. Each function call in this example corresponds
to an individual USB transfer. These transfers must be executed in sequence; each
transfer must be delayed until the one before it has completed. do init is a syn-
chronous and blocking function which we must convert to an asynchronous model to
meet the new design goals.

The execution flow of the above function is clear, but that is easily lost when
moving to an asynchronous model. Under an asynchronous model, each function
call to fire off a transfer returns immediately, but the subsequent transfer must be
deferred until after the current one has completed. A basic implementation could
achieve this by firing off the subsequent transfer from the callback function, e.g.:

int do_init(struct fp_dev *dev) {

send_cmdresponse(dev, init_resp03, send_resp03_cb);

}

/* called when the transfer initiated by do_init completes */

void send_resp03_cb(struct fp_dev *dev) {

read_msg(dev, ..., read_msg03_cb);

}

/* called when the transfer initiated by send_resp03_cb completes */

void read_msg03_cb(struct fp_dev *dev) {

send_cmd28(dev, 0x06, 0x04, 1, send_cmd28_06_cb);

}

/* and so on. the remaining functions are omitted to save space */

When considering extra logic that must be included such as error checking, error
handling, and more advanced situations where a transfer is repeated in a loop, the
model of each transfer becoming its own function had the effect of reducing read-
ability, losing linear execution flow, and increasing complexity over the synchronous
equivalent. I was not happy with such sacrifices.

28

5.2 Adding an asynchronous interface

I considered implementing state machines for these situations, where the asyn-
chronous callback functions could simply advance the machine to the next state and
everything else could be done in sequence from a state handling function. Figure 5.2
shows the example function as a state machine.

send_cmdresponse
init_resp03

read_msg
send_cmd28

0x06
read_msg28

0x06

Figure 5.2: Example initialisation as a state machine

When expressed in code, this state machine can be represented in two functions
and the execution flow is once again more obvious:

void callback_function(state_machine *sm)

{

iterate_to_next_state(sm);

}

void state_handler(state_machine *sm, struct fp_dev *dev, int state) {

switch (state) {

case 0:

send_cmdresponse(dev, init_resp03, callback_function);

break;

case 1:

read_msg(dev, ..., callback_function);

break;

case 2:

send_cmd28(dev, 0x06, 0x04, 1, callback_function);

break;

case 3:

read_msg28(dev, 0x06, ..., callback_function);

break;

}

}

It turns out that most of the state machines required by my drivers are similar
to the above: the execution flow is rarely anything other than linear. libfprint
implements a simplistic state machine model tuned for my requirements:

• Each state machine provides a list of states that will normally be traversed
linearly from start to finish.

• An implicit final state is created, with an error parameter. An error code of 0
indicates successful completion, anything else indicates error.

• The final state will normally be reached with error code 0 when the machine is
incremented beyond the last non-implicit state.

29

5.2 Adding an asynchronous interface

• The final state can also be reached from any earlier state, with an appropriate
error code. This also allows for state machines to terminate with error at any
point, and also allows them to complete early (error code 0).

• Although it will normally not happen, each state can jump to any other state
through a simple function call.

This design can neatly model the simplistic sequential TouchStrip initialisation
procedure, as well as more complex initialisation routines for devices such as the
U.are.U 4000B shown in Figure 5.3.

Get
hwstat

Check
hwstat

Mask off high
hwstat bits

Get
hwstat

Check
hwstat

Check
hwstatSet hwstat

bit 7
Read
fwenc

Set
fwenc

Mask off high
hwstat bits

Get
hwstat

Sleep
10ms

Check
hwstat

Sleep
10ms

Await scan
power

DONE

Bits 4,7 set

else Bit 0
unset

Bit 0
set

Bit 7
unset

Bit 7 set

Bit 7
set

IRQ timeout Got IRQ

Bit 7
unset

Figure 5.3: U.are.U 4000B initialisation state machine

5.2.4 Exposing an asynchronous libfprint interface

After moving the abstraction layers to an asynchronous model and reworking drivers
appropriately, the next step was to add a public interface to the new abstraction
layer structure. This was a fairly simple process of adding some publicly exported
functions which wrap the new functions in my abstraction layers.

Recall Section 5.2.1 which discussed the zero threads model employed in libusb-
1.0. Like libusb, libfprint is threadless internally. As libfprint can be viewed as an
application built on top of libusb, libfprint must honour libusb’s requirement of
calling libusb handle events() when libusb has work to do. libfprint, however, is
a zero-threaded library and only executes when a parent application is calling into it.

To solve this problem, libfprint exposes a fp handle events() function, which
effectively boils down to a call to libusb handle events(). libfprint also provides

30

5.3 Implementing a systemwide daemon

functions to provide access to libusb’s set of file descriptors. Applications built on top
of libfprint’s asynchronous interface are then required to monitor those file descriptors
in their main loop and invoke fp handle events() when activity is detected.

In order to test the improvements in this prototype, I ported fprint demo to
use the new asynchronous interface. This involved adding the file descriptors ex-
posed by libfprint to GTK+’s main loop, a simple modification. Porting to the
asynchronous interface also solved the two problems mentioned in Section 4.7.1; the
GUI remains responsive while waiting for a fingerprint scan, and a cancel button has
been implemented cleanly.

5.2.5 Reimplementing a synchronous interface

The previously implemented libfprint interface had broken after the internal abstrac-
tion layers had been moved to an asynchronous model. Despite the deficiencies of
the previous interface, a synchronous interface does have the advantage of simplicity
so I decided that I would provide it in addition to the asynchronous interface.

I was able to reimplement the synchronous interface with simple functions that
call into the asynchronous layer and wait for results before returning.

5.3 Implementing a systemwide daemon

To solve problems relating to fingerprint device access contention, I decided to
implement a systemwide daemon for management of hardware. The daemon would
expose libfprint functionality over the D-Bus[6] system message bus. This design
choice was independently backed by several community members.

I am no fan of resource wastage, and the idea of a dedicated daemon for fingerprint
scanning may seem somewhat sub-optimal. D-Bus addresses this concern through
its activation mechanism; D-Bus will only launch the daemon when it is needed, and
the daemon is free to shut down when nobody is using it.

Access contention problems are solved by the systemwide nature of this daemon.
Even if multiple users/applications are using fingerprint readers concurrently, only
one daemon will be running. The daemon will be aware of all users and their
applications, and can share resources appropriately.

During development, I was able to implement a prototype daemon, fprintd. fprintd
offers enrollment and verification through exposing fingerprint scanner objects on the
bus. Unfortunately, time constraints resulted in development halting before I made
further progress. My ideas for the next steps in development are presented below.

• Use ConsoleKit[26] to determine the current system user.

• Use PolicyKit[36] to allow configuration of access permissions. PolicyKit would
allow for fine-grained configuration policies such as “only these certain users
can enroll fingerprints,” and more obviously, “only root can delete other users’
enrolled fingerprint data.”

• Develop a pluggable storage backend to allow for flexible storage scenarios such
as storing enrollment data on a remote database server.

31

5.3 Implementing a systemwide daemon

• Implement logical ownership tracking. For example, track that user X and
application Y are using a specific fingerprint reader at that specific moment.
Other applications could then be properly informed why a specific fingerprint
reader is unavailable.

• Flesh out the D-Bus interface to expose all libfprint features. For example,
the prototype implementation only offers a simple verification interface, but it
would be useful to optionally present image data over D-Bus so that applications
can present visual feedback of the scan.

32

Chapter 6

Results

6.1 libfprint performance

6.1.1 Library core

The abstraction layers were implemented as planned. I tested functionality after
development of each component and fixed problems as I found them. The final
implementation feels to have achieved stability.

6.1.2 UPEK TouchStrip driver performance

Given that the TouchStrip does not present images, the performance of this driver is
mostly down to the quality of image processing that happens in hardware. Fortunately,
my testing indicates that the image processing results are accurate; I have never
encountered a false acceptance, and I only saw a couple of false rejections before I
had learnt the scanning technique.

The driver’s communication with the device is mostly stable, but occasionally I
discover a new status code from the device which the driver does not know how to
handle (status code indicate conditions such as “finger scanned too fast” and “finger
scanned too slow”). Fixing this should be easy; I have recently been referred to some
UPEK documentation including a status code listing.

6.1.3 Digital Persona U.are.U 4000B driver performance

After solving some problems within the device initialisation sequence, this driver has
achieved stability. The driver occasionally receives an interrupt of which the meaning
is unknown; I have named it the interrupt of death. Arrival of this interrupt seems
to indicate that the next requested scan session will fail (returning no image data).
This only happens sporadically and for unknown reasons, and will need further
experimentation to know how to handle.

The imaging performance of this device is excellent. The returned images are
large and MINDTCT finds a large number of minutiae, leading to suitably distinct
BOZORTH3 scores for matching/non-matching fingers. Figure 6.1 shows an image
returned by this driver and its binarized form with minutiae plotted.

33

6.1 libfprint performance

Figure 6.1: U.are.U 4000B fingerprint image and processing results

6.1.4 AuthenTec AES4000 performance

This device presented some challenges due to the low quality of images that are
detected by the sensor. After implementing the image enlargement workaround
described in Section 4.4.3, image performance of this driver has reached satisfactory
levels but is not perfect; I have experienced some false rejections and have seen one
false acceptance. I believe the main limitations are the small number of minutiae
and the noise around the fingerprint. See Figure 6.2 for example images.

Figure 6.2: AES4000 fingerprint image and processing results

This driver is otherwise working perfectly.

6.1.5 AuthenTec AES2501 performance

This driver is working well. On occasion, the driver incorrectly reports that the
finger has been removed sooner than it has, but this should be fixable by making the
finger removal detection more dynamic. When this does happen, it is easy enough
to retry the scan.

The swipe scanning technique produces images covering a large finger area
where many minutiae can be detected. Imaging performance is excellent as a result.
Figure 6.3 shows an image returned by this driver and its binarized form with
minutiae plotted.

34

6.2 fprint demo results

Figure 6.3: AES2501 fingerprint image and processing results

6.2 fprint demo results

fprint demo was implemented as planned and works well. I do not know of any
problems. Screenshots of the functionality are shown in Figures 6.4, 6.5, 6.6, and 6.7.

6.3 pam fprint results

pam fprint implementation went smoothly and worked reliably during my testing.
Figure 6.8 shows a shadow login session configured to use pam fprint rather than
asking for a password.

6.4 fprintd results

fprintd development did not progress far enough to present the fully-fledged applica-
tion integration opportunities that I planned for. Nevertheless, basic functionality
has been implemented and tested using simple command line example programs.
Figure 6.9 shows the fprintd object space from the view of a D-Bus debugging utility.

35

6.4 fprintd results

Figure 6.4: fprint demo enrollment data management

Figure 6.5: fprint demo enrollment interface

36

6.4 fprintd results

Figure 6.6: fprint demo verification interface

Figure 6.7: fprint demo identification interface

37

6.4 fprintd results

This is airbag (Linux i686 2.6.25-rc8) 11:45:47

airbag login: dsd
Please scan right index finger on Digital Persona U.are.U 4000B

Last login: Tue Apr 8 11:32:31 +0100 2008 on tty1.

dsd@airbag ~$

Figure 6.8: pam fprint controlling a shadow login session

Figure 6.9: D-Bus debugger showing fprintd object space

38

Chapter 7

Evaluation

7.1 Analysis of results

7.1.1 Hardware support

I have been successful in supporting the 4 ranges of devices I targeted in my design.
All of them work well enough for usable fingerprint-based authentication to be offered
by my software.

Reliability of the drivers is not 100%, but I am confident that I can solve the
known problems given some more time working on them. The outstanding problems
only appear occasionally and do not impair usability as the user can just retry the
scan.

7.1.2 Abstraction

Providing a high-level generic fingerprint scanning API was one of my core goals. I
achieved this through implementing layers of abstraction and providing a public API
to access the uppermost layer.

The public API successfully meets this goal through exposing only the core con-
siderations needed for fingerprint scanning. API documentation has been produced,
which I believe has been useful to those attempting to use libfprint from other
projects.

Development of pam fprint is worthy of a mention here. I developed and tested
the initial prototype for the login module in under 20 minutes, the implementation
weighing in at under 250 lines of code. This shows the success of my abstract design
simplifying the process of integrating fingerprint scanning into applications.

7.1.3 Asynchronous design

The conversion to an asynchronous model took longer than expected, especially
considering the platform improvements (rewriting libusb) that were necessary in
order to realize my design ideas. Despite delaying the remainder of the project
implementation efforts, I remained confident at every stage that this was the right
direction to be going in.

39

7.2 Open source project

Ultimately, libfprint previously only offered a synchronous interface, but moving
in the asynchronous direction allows the library to offer both a synchronous interface
and an asynchronous interface. No functionality has been lost and the library is now
suitable for integration into a wider range of applications. I demonstrated that the
asynchronous model solved some important problems through taking fprint demo to
the stages of the 2nd prototype, and I suspect that we will reap further benefits of
the asynchronous model as development continues.

7.1.4 Application integration

I had originally aimed to present my software smoothly integrated with existing soft-
ware such as login managers. Although I managed to reach prototype stages through
the development of pam fprint, I did not have enough time to bring application
integration to the stages where I would like.

The targeted authentication system, PAM, presented itself insufficient to meet
the unique requirements of fingerprint authentication systems. It seems that the best
approach in the short term is to circumvent PAM in applications when fingerprint
readers are present. A possible future long-term project is to design a new generic
authentication system better meeting the needs of fingerprint scanning and other
biometric methods.

Smooth application integration requires the systemwide daemon implementation
which only reached prototype stages during my project. Daemon development
required the asynchronous interface, the development of which ended up consuming
more time than expected.

7.2 Open source project

Being an open source project that made previously unsupported devices usable and
useful, my project attracted quite a lot of attention. A community has formed and
is quite active with discussion and user support. A few key members also contribute
to development and they have been mentioned throughout this report.

I host a mailing list[5] which is the central communication channel for user
support, discussion and development. The list is relatively busy, with a total of 520
messages to date from 161 subscribers.

The project website[7] has had 28,312 hits to the front page, and a total of 128,149
hits over the entire website.

I produced the official releases in the form of source code tarballs which were
published on SourceForge. SourceForge provides some statistics[12]: there have been
8101 recorded downloads of source components, an average of 56 downloads per
day since initial release, or a total of 1.9GB download bandwidth. Figure 7.1 shows
downloads by month.

It is unfortunately not possible to count the number of users of my software as the
majority of users install it from distribution-supplied binary packages. Nevertheless,
I feel that the source tarball download statistics are enough to indicate the successful
launch of the open source project.

All statistics above are correct as of April 7th, 2008.

40

7.2 Open source project

Figure 7.1: SourceForge download statistics by month

7.2.1 Joining of communities

Section 1.4 mentioned how different projects were focusing on their own devices
and not really working together. I was pleased to see other developers recognising
the advantages of the unified approach I was taking in my project. Hoenig quickly
stated his interested in obsoleting the ThinkFinger project in favour of mine. Gerard
Klaver, who had previously spent some time tinkering with AES2501 devices and
had informally become the definitive source of information for all kinds of AuthenTec
scanners, closed his project[23] with the note “Development stopped, use fprint.”

7.2.2 Distribution interest

Various Linux distributions expressed interest in packaging up my software to allow
their users to install it with ease. Given that I am not ready to commit to stable
interfaces, I requested that distributions exclude my software from their stable/official
trees. Nevertheless, the following distributions ship packages of my software in their
unstable/experimental trees: Arch, Debian, Fedora, Gentoo, Mandriva, SuSE, and
Ubuntu.

Some distributors expressed interest in including my software in their base install,
with the intention of fingerprint scanning being available out-of-the-box on such
systems. My software is being considered for inclusion in Mandriva 2008.1[1] and
Fedora 10[4].

7.2.3 Identified problems

Releasing my software to the community allowed for testing and development in
environments other than my own. I shall briefly summarise some of the key problems
that have been identified by others.

• NBIS performs badly for small images. I was already aware of this from
my experiences with the AES4000, although I managed to tweak that driver to
perform acceptably. Bretaudeau’s contributed driver for the AES1610 device

41

7.2 Open source project

encounters similar issues; the AES1610 sensor is small and the resultant images
typically have under 10 minutiae[18].

• NBIS performs badly for older users. Mark Vytlacil indicated that he
was not getting the kind of results that I was presenting with the U.are.U
4000B and suggested[32] that it was because the skin on his fingers had lost
elasticity with age.

• AES2501 auto-calibration is needed for some hardware. AES2501
sensors can be found in a lot of different laptops, and they appear to exist
in different configurations. Our fixed sensitivity values perform badly[22]
in certain systems, to the point where images are so bad that they are not
processable.

42

Chapter 8

Conclusion

8.1 Achievements

8.1.1 Targets met

The central project component, libfprint, reaches the following project goals:

• Cleanly layered design and architecture.

• Satisfactory hardware support for all devices discussed in Section 2.1.

• Generic public API for fingerprint scanning.

• Suitability for integration into a wide range of applications.

The authentication module, pam fprint, allows for integration with many existing
applications and serves as a simple example of how to integrate libfprint into an
application.

The demonstration GUI, fprint demo, allows for demonstration and testing. It
also serves as an example of how to integrate libfprint into more complex applications
with multiple event sources.

All components were released as open source, leading to the formation of an
active community.

8.1.2 Targets not met

Although my software has been integrated into other software via the use of
pam fprint, application integration has not reached the stages I would have hoped
for. There is no visual scan feedback, communication with the user is poor, and
pam fprint as a proof-of-concept has its own implementation deficiencies.

I established that exposing fingerprint scanning functionality through a D-Bus
daemon was a sensible solution here, but my fprintd implementation was limited by
time constraints.

I aimed to form a community around my open source project with a “release early,
release often” mantra. I produced regular releases for the first prototype, however,
no official second prototype releases have been made for reasons to be explained in

43

8.2 Future plans

the following section. Nevertheless, the code has always been available from public
development repositories and I am aware of several users who have tried it.

8.2 Future plans

8.2.1 Upcoming development goals

The software components only reached prototype stages under the time constraints
of the academic project. As mentioned in the introduction, I intend to continue
development, and there is plenty to be done!

I have been unable to create official releases of my recent work because of
dependencies between components that do not yet offer interface stability. In
order to be able to achieve my application integration goals, I shall be stabilising
components from the ground up through the following tasks:

1. Complete, test and stabilise libusb-1.0. libusb is the lowest level compo-
nent in the project. Existing versions are widespread, so I must work to satisfy
existing users through a well-designed and documented API.

2. Tweak libfprint asynchronous API and release libfprint-0.1.0. Having
just designed an asynchronous fingerprint scanning interface for the first time,
there are a few things I would like to change before releasing it as a finalised
API. The asynchronous libfprint release also depends upon libusb-1.0 reaching
stability.

3. Complete, test and stabilise fprintd. The short term fprintd plans were
discussed in Section 5.3. As fprintd uses libfprint’s asynchronous API, it cannot
be released until libfprint-0.1.0 has been completed.

4. Continue application integration tasks. Existing applications will be
modified to optionally use fprintd for authentication. These tasks obviously
depend on fprintd being released.

8.2.2 Long term goals

As is natural for an open source project, some community members have raised
possible future directions for the project.

• Fingerprint scanning on embedded devices. Community members in-
cluding Jeff White[33] and Jono Woodhouse[34] expressed interest in running
my software on small systems with scarce resources. This is impractical at the
moment because libfprint depends on some sizable libraries, but work has been
started to remove these dependencies. I plan to revisit this after reaching my
application integration goals.

• Cross-platform compatibility. libfprint is written with architecture porta-
bility in mind, and all of its dependencies are cross-platform. I have been
focusing development efforts on Linux, but community members have been

44

8.2 Future plans

able to run my software on Mac OS X[27] and OpenBSD[30]. I believe it is
also possible to run the first prototype on Windows given that ports of glib
and libusb-0.1 are available. Some portability issues remain to be fixed and
extra effort will be required to integrate with standard authentication systems
on these alternative platforms.

• More hardware support. There are a lot of fingerprint readers out there.
Some users have offered their assistance in future reverse engineering efforts to
allow drivers to be written.

• Language bindings. I hope to spark efforts to make libfprint and fprintd
easily accessible from development environments based on languages such as
Java and Python.

45

References

[1] 2008.1 Detailed Specifications - Mandriva Community Wiki, http: // wiki.

mandriva. com/ en/ 2008. 1_ Detailed_ Specifications , Retrieved on April
7th, 2008.

[2] Authentec AES2501B Sensor, http: // www. authentec. com/

products-pcsandperipherals-aes2501b. html , Retreived on March
19th, 2008.

[3] dpfp: DigitalPersona/Microsoft Fingerprint Reader Driver for Linux, http:
// dpfp. berlios. de , Retrieved on March 19th, 2008.

[4] Features/Fingerprint - Fedora Community Wiki, http: // fedoraproject.

org/ wiki/ Features/ Fingerprint , Retrieved on April 7th, 2008.

[5] fprint Info Page, http: // lists. reactivated. net/ mailman/ listinfo/

fprint , Retrieved on April 7th, 2008.

[6] freedesktop.org - Software/dbus, http: // dbus. freedesktop. org/ , Retrieved
on April 6th, 2008.

[7] Main Page - fprint project, http: // www. reactivated. net/ fprint/ , Re-
trieved on April 7th, 2008.

[8] National Institute of Standards and Technology, http: // www. nist. gov , Re-
trieved on March 20th, 2008.

[9] NIGOS License, http: // www. itl. nist. gov/ iad/ 894. 03/ nigos/

NIGOS_ licdis_ 061906. pdf , Retrieved on March 20th, 2008.

[10] NIST Biometric Image Software, http: // fingerprint. nist. gov/ NBIS/

index. html , Retrieved on March 20th, 2008.

[11] OpenUSB, http: // openusb. sourceforge. net/ wiki , Retrieved on April
6th, 2008.

[12] SourceForge.net: Project Statistics for fprint, http: // sourceforge. net/

project/ stats/ detail. php? group_ id= 208521&ugn= fprint&type=

prdownload&mode= alltime , Retrieved on April 7th, 2008.

[13] Targus PA460U, http: // www. targus. com/ us/ drivers_ manuals_

archive. asp? SKU= PA460U , Retreived on March 19th, 2008.

46

http://wiki.mandriva.com/en/2008.1_Detailed_Specifications
http://wiki.mandriva.com/en/2008.1_Detailed_Specifications
http://www.authentec.com/products-pcsandperipherals-aes2501b.html
http://www.authentec.com/products-pcsandperipherals-aes2501b.html
http://dpfp.berlios.de
http://dpfp.berlios.de
http://fedoraproject.org/wiki/Features/Fingerprint
http://fedoraproject.org/wiki/Features/Fingerprint
http://lists.reactivated.net/mailman/listinfo/fprint
http://lists.reactivated.net/mailman/listinfo/fprint
http://dbus.freedesktop.org/
http://www.reactivated.net/fprint/
http://www.nist.gov
http://www.itl.nist.gov/iad/894.03/nigos/NIGOS_licdis_061906.pdf
http://www.itl.nist.gov/iad/894.03/nigos/NIGOS_licdis_061906.pdf
http://fingerprint.nist.gov/NBIS/index.html
http://fingerprint.nist.gov/NBIS/index.html
http://openusb.sourceforge.net/wiki
http://sourceforge.net/project/stats/detail.php?group_id=208521&ugn=fprint&type=prdownload&mode=alltime
http://sourceforge.net/project/stats/detail.php?group_id=208521&ugn=fprint&type=prdownload&mode=alltime
http://sourceforge.net/project/stats/detail.php?group_id=208521&ugn=fprint&type=prdownload&mode=alltime
http://www.targus.com/us/drivers_manuals_archive.asp?SKU=PA460U
http://www.targus.com/us/drivers_manuals_archive.asp?SKU=PA460U

REFERENCES

[14] ThinkFinger, http: // thinkfinger. sourceforge. net/ , Retrieved on
March 19th, 2008.

[15] User’s Guide to Export Controlled Distribution of NIST Biometric Image Soft-
ware, Retrieved from NBIS CDROM Distribution, release 1.1.0.

[16] User’s Guide to NIST Biometric Image Software, http: // fingerprint.

nist. gov/ NBIS/ nbis_ non_ export_ control. pdf , Retrieved on March
20th, 2008.

[17] Cyrille Bagard, aes2501 kernel driver, http: // home. gna. org/ aes2501/

index_ en. html , Retreived on March 19th, 2008.

[18] Anthony Bretaudeau, AES 1610 support, http: // lists. reactivated. net/
pipermail/ fprint/ 2007-November/ 000074. html , November 2007, Email
to fprint mailing list.

[19] Daniel Drake, Interviews with Cyrille Bagard, November 2007.

[20] Daniel Drake, Username-less authentication? http: // lists. reactivated.

net/ pipermail/ fprint/ 2007-December/ 000305. html , December 2007, In
response to email from Eddie Hung.

[21] Johannes Erdfelt, taking over the libusb project?, November 2007, Email discus-
sion.

[22] Michael Ivanov, Poor fingerscan quality on nw9440 aes2501,
http: // projects. reactivated. net/ fprint/ bugs/ index. php? do=

details&task_ id= 2 , November 2007, libfprint bug report.

[23] Gerard Klaver, authentec fingerprint information, http: // gkall. hobby. nl/
authentec. html , Retrieved on April 25th, 2008.

[24] Sophia Li, Re: Some untested openusb patches, http: // sourceforge. net/
mailarchive/ message. php? msg_ name= 474FE30B. 6050602% 40sun. com ,
November 2007, In response to email from Daniel Drake.

[25] Pavel Machek, driver for thinkpad fingerprint sensor, http: // lkml. org/

lkml/ 2006/ 8/ 2/ 237 , August 2006, Email to Linux kernel mailing list.

[26] William Jon McCann, Announcing ConsoleKit, http: // lists. freedesktop.
org/ archives/ hal/ 2007-January/ 006996. html , January 2007.

[27] Geppy Parziale, Instruction to compile on OS X, http: // lists.

reactivated. net/ pipermail/ fprint/ 2008-January/ 000353. html , Jan-
uary 2008, Email to fprint mailing list.

[28] Shivang Patel, Fingerprint Verification System, http: // fvs. sourceforge.
net , Retrieved on March 20th, 2008.

47

http://thinkfinger.sourceforge.net/
http://fingerprint.nist.gov/NBIS/nbis_non_export_control.pdf
http://fingerprint.nist.gov/NBIS/nbis_non_export_control.pdf
http://home.gna.org/aes2501/index_en.html
http://home.gna.org/aes2501/index_en.html
http://lists.reactivated.net/pipermail/fprint/2007-November/000074.html
http://lists.reactivated.net/pipermail/fprint/2007-November/000074.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000305.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000305.html
http://projects.reactivated.net/fprint/bugs/index.php?do=details&task_id=2
http://projects.reactivated.net/fprint/bugs/index.php?do=details&task_id=2
http://gkall.hobby.nl/authentec.html
http://gkall.hobby.nl/authentec.html
http://sourceforge.net/mailarchive/message.php?msg_name=474FE30B.6050602%40sun.com
http://sourceforge.net/mailarchive/message.php?msg_name=474FE30B.6050602%40sun.com
http://lkml.org/lkml/2006/8/2/237
http://lkml.org/lkml/2006/8/2/237
http://lists.freedesktop.org/archives/hal/2007-January/006996.html
http://lists.freedesktop.org/archives/hal/2007-January/006996.html
http://lists.reactivated.net/pipermail/fprint/2008-January/000353.html
http://lists.reactivated.net/pipermail/fprint/2008-January/000353.html
http://fvs.sourceforge.net
http://fvs.sourceforge.net

REFERENCES

[29] Sanyam Sharma and Sunil Mohan Ranta, eFinger FingerPrint Matching Tool,
http: // efinger. sourceforge. net , June 2004, Retrieved on March 20th,
2008.

[30] Joshua Stein, libfprint portability fixes, http: // lists. reactivated. net/

pipermail/ fprint/ 2007-December/ 000296. html , December 2007, Email
to fprint mailing list.

[31] UPEK Technical Support, Information from UPEK on Fingerprint
reader 147e:2016, http: // lists. reactivated. net/ pipermail/ fprint/

2008-March/ 000435. html , February 2008, Message from UPEK forwarded
by Robert Hoffler.

[32] Mark Vytlacil, age and fingerprints, http: // lists. reactivated. net/

pipermail/ fprint/ 2007-December/ 000284. html , December 2007, Email
to fprint mailing list.

[33] Jeff White, fprint for embedded, http: // lists. reactivated. net/

pipermail/ fprint/ 2008-January/ 000319. html , January 2008, Email to
fprint mailing list.

[34] Jono Woodhouse, Dependencies on glib/imageMagik, http: // lists.

reactivated. net/ pipermail/ fprint/ 2007-December/ 000227. html , De-
cember 2007, Email to fprint mailing list.

[35] Wittawat Yamwong, aes2501-wy source distribution, http: // gkall. hobby.
nl/ aes2501-wy. tar. bz2 , Retreived on March 19th, 2008.

[36] David Zeuthen, libhal-policy - PolicyKit, http: // lists. freedesktop. org/
archives/ hal/ 2006-March/ 004770. html , March 2006.

[37] David Zeuthen, Thinkfinger’s PAM module emits annoying RETURN key
when using password, https: // bugzilla. redhat. com/ show_ bug. cgi?

id= 356921 , October 2007.

48

http://efinger.sourceforge.net
http://lists.reactivated.net/pipermail/fprint/2007-December/000296.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000296.html
http://lists.reactivated.net/pipermail/fprint/2008-March/000435.html
http://lists.reactivated.net/pipermail/fprint/2008-March/000435.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000284.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000284.html
http://lists.reactivated.net/pipermail/fprint/2008-January/000319.html
http://lists.reactivated.net/pipermail/fprint/2008-January/000319.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000227.html
http://lists.reactivated.net/pipermail/fprint/2007-December/000227.html
http://gkall.hobby.nl/aes2501-wy.tar.bz2
http://gkall.hobby.nl/aes2501-wy.tar.bz2
http://lists.freedesktop.org/archives/hal/2006-March/004770.html
http://lists.freedesktop.org/archives/hal/2006-March/004770.html
https://bugzilla.redhat.com/show_bug.cgi?id=356921
https://bugzilla.redhat.com/show_bug.cgi?id=356921

	1 Introduction
	1.1 Fingerprint scanning applications
	1.2 Software support
	1.3 Fingerprint scanning on Linux
	1.4 Project objectives
	1.5 Open source software
	1.6 Report overview

	2 Research
	2.1 Device support
	2.2 Image processing
	2.3 Summary

	3 Design
	3.1 Public API design
	3.2 Data storage
	3.3 Data compatibility
	3.4 Driver abstraction
	3.5 Device discovery

	4 First prototype implementation
	4.1 Objectives
	4.2 Implementation choices
	4.3 Abstraction implementation
	4.4 Driver implementations
	4.5 Additional components
	4.6 Further developments
	4.7 Deficiencies

	5 Second prototype implementation
	5.1 Objectives
	5.2 Adding an asynchronous interface
	5.3 Implementing a systemwide daemon

	6 Results
	6.1 libfprint performance
	6.2 fprint_demo results
	6.3 pam_fprint results
	6.4 fprintd results

	7 Evaluation
	7.1 Analysis of results
	7.2 Open source project

	8 Conclusion
	8.1 Achievements
	8.2 Future plans

	References

